Novel Microfluidic Instrument for Spacecraft Environmental Monitoring, Phase I

Completed Technology Project (2012 - 2012)

Project Introduction

HJ Science & Technology, Inc. proposes to demonstrate the feasibility of an integrated "lab-on-a-chip" technology capable of in-situ, high throughput, and real time identification and characterization of a variety of toxic metals, organics, and bacteria biomarkers in spacecraft water supplies onboard the International Space Station. The novel technology combines automated programmable on-chip sample processing technology, microchip capillary electrophoresis, and laser induced fluorescence detection in a miniaturized format. In terms of spacecraft environmental monitoring, the in situ measurement capability of our portable platform offers important advantages including reduction in time and cost, real-time data for better and more timely decision making, and reduction in sample consumption. In addition to the unprecedented sensitivity, efficiency, selectivity, and throughput compared with the current state-of-the-art technologies, the proposed miniature instrument also meets the stringent space-flight requirements including small consumption of sample and reagent, low-mass, low-power consumption, rapid analysis time, and microgravity compatibility. In Phase I, we will establish the technical feasibility of the technology by analyzing fluorescently labeled ketones and aldehydes as a proof of principle demonstration. In Phase II, the main focus will direct towards the development of a miniaturized prototype to be delivered to NASA by incorporating the most promising design based on the results of Phase I as well including additional detection modules in order to extend the measurement and analysis capability to other contaminants relevant to spacecraft environmental monitoring.

Primary U.S. Work Locations and Key Partners

Novel Microfluidic Instrument for Spacecraft Environmental Monitoring, Phase I

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Novel Microfluidic Instrument for Spacecraft Environmental Monitoring, Phase I

Completed Technology Project (2012 - 2012)

Organizations Performing Work	Role	Туре	Location
HJ Science & Technology, Inc.	Lead Organization	Industry Small Disadvantaged Business (SDB)	Berkeley, California
Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

Primary U.S. Work Locations

California

Project Transitions

February 2012: Project Start

August 2012: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138377)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

HJ Science & Technology, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Hong Jiao

Co-Investigator:

Hong Jiao

Small Business Innovation Research/Small Business Tech Transfer

Novel Microfluidic Instrument for Spacecraft Environmental Monitoring, Phase I

Completed Technology Project (2012 - 2012)

Technology Areas

Primary:

- TX06 Human Health, Life Support, and Habitation Systems
 - □ TX06.4 Environmental Monitoring, Safety, and Emergency Response
 - └─ TX06.4.1 Sensors: Air, Water, Microbial, and Acoustic

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

